

Unsolvable Problems
Part Two

Outline for Today

● Recap from Last Time
● Where are we, again?

● A Diferent Perspective on RE
● What exactly does “recognizability” mean?

● Verifers
● A new approach to problem-solving.

● Beyond RE
● A beautiful example of an impossible problem.

Recap from Last Time

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT called the
universal Turing machine that, when run on an input of the form
⟨M, w⟩, where M is a Turing machine and w is a string, simulates M
running on w and does whatever M does on w (accepts, rejects, or loops).

● The observable behavior of U TM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

● If M rejects w, then UTM rejects ⟨M, w⟩.

● If M loops on w, then UTM loops on ⟨M, w⟩.

TM

...input...

M

w Universal TM

accept!

reject!

(loop)

M does to w

what

UTM does to ⟨M, w⟩.

M does to w

what

UTM does to ⟨M, w⟩.

Self-Referential Programs

● Claim: Any program can be augmented
to include a method called mySource() that
returns a string representation of its
source code.

● Theorem: It it possible to build Turing
machines that get their own encodings
and perform arbitrary computations on
them.

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

What happens if...

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What happens if...

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Regular
Languages CFLs

All Languages

R RE

ATM

New Stuf!

More Impossibility Results

The Halting Problem

● The most famous undecidable problem is the
halting problem, which asks:

Given a TM M and a string w,
will M halt when run on w?

● As a formal language, this problem would be
expressed as

HALT = { ⟨M, w⟩ | M is a TM that halts on w }
● This is an RE language. (We’ll see why later.)
● How do we know that it’s undecidable?

Claim: A decider for HALT is a self-
defeating object. It therefore doesn’t exist.

A Decider for HALT

● Let’s suppose that, somehow, we managed to build a
decider for HALT = { ⟨M, w⟩ | M is a TM that halts on w }.

● Schematically, that decider would look like this:

● We could represent this decider in software as a method

bool willHalt(string program, string input);

that takes as input a program and a string, then returns
whether that program will halt on that string.

Decider
for HALT

M

w

Yes, M halts on w.

No, M loops on w.

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

Imagine running this program on
some input. What happens if...

… this program halts on that input?
It loops on the input!

… this program loops on this input?
It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

bool willHalt(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}

“The
largest

integer n”

“The
largest

integer n”

“Using n to get
n+1”

“Using n to get
n+1”

Theorem: HALT ∉ R.

Proof: By contradiction; assume that HALT ∈ R. Then there’s a decider
D for HALT, which we can represent in software as a method willHalt
that takes as input the source code of a program and an input, then
returns true if the program halts on the input and false otherwise.

Given this, we could then construct this program P:

 int main() {
 string me = mySource();
 string input = getInput();

 if (willHalt(me, input)) while (true) { /* loop! */ }
 else accept();
 }

Choose any string w and trace through the execution of program P on
input w, focusing on the answer given back by the willHalt method. If
willHalt(me, input) returns true, then P must halt on its input w.
However, in this case P proceeds to loop infnitely on w. Otherwise, if
willHalt(me, input) returns false, then P must not halt its input w.
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have
been wrong. Therefore, HALT ∉ R. ■

HALT ∈ RE

● Claim: HALT ∈ RE.
● Idea: If you were certain that a TM M halted on a

string w, could you convince me of that?
● Yes – just run M on w and see what happens!

int main() {
TM M = getInputTM();
string w = getInputString();

feed w into M;
while (true) {

if (M is in an accepting state) accept();
else if (M is in a rejecting state) accept();
else simulate one more step of M running on w;

}
}

int main() {
TM M = getInputTM();
string w = getInputString();

feed w into M;
while (true) {

if (M is in an accepting state) accept();
else if (M is in a rejecting state) accept();
else simulate one more step of M running on w;

}
}

Regular
Languages CFLs

All Languages

R RE

ATM

HALT

So What?

● These problems might not seem all that
exciting, so who cares if we can't solve
them?

● Turns out, this same line of reasoning
can be used to show that some very
important problems are impossible to
solve.

Secure Voting

● Suppose that you want to make a voting
machine for use in an election between two
parties.

● Let Σ = {r, d}. A string in w corresponds to
a series of votes for the candidates.

● Example: rrdddrd means “two people voted
for r, then three people voted for d, then
one more person voted for r, then one more
person voted for d.”

Secure Voting

● A voting machine is a program that takes
as input a string of r's and d's, then
reports whether person r won the
election.

● Question: Given a TM that someone
claims is a secure voting machine, could
we automatically check whether it
actually is a secure voting machine?

int main() {
 string input = getInput();
 int numRs = countRsIn(input);
 int numDs = countDsIn(input);

 if (numRs > numDs) accept();
 else reject();
}

int main() {
 string input = getInput();

 if (input[0] == 'r') accept();
 else reject();
}

int main() {
 string input = getInput();
 int numRs = countRsIn(input);
 int numDs = countDsIn(input);

 if (numRs = numDs) reject();
 else if (numRs < numDs) reject();
 else accept();
}

int main() {
 string input = getInput();

 int n = input.length();
 while (n > 1) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }

 int numRs = countRsIn(input);
 int numDs = countDsIn(input);

 if (numRs > numDs) accept();
 else reject();
}

A (simple) secure voting machine. A (simple) insecure voting machine.

An (evil) insecure voting machine. No one knows!

A secure voting machine is a TM M where
ℒ(M) = { w ∈ Σ* | w has more r’s than d’s }

Secure Voting

● A voting machine is a program that takes
as input a string of r's and d's, then
reports whether person r won the
election.

● Question: Given a TM that someone
claims is a secure voting machine, could
we automatically check whether it
actually is a secure voting machine?

Claim: A program that decides whether
arbitrary input programs are secure voting

machines is self-defeating. It therefore
doesn’t exist.

A Decider for Secure Voting

● Let’s suppose that, somehow, we managed to build a
decider for the secure voting problem.

● Schematically, that decider would look like this:

● We could represent this decider in software as a method

bool isSecureVotingMachine(string program);

that takes as input a program, then returns whether that
program is a secure voting machine.

Decider
for secure

voting

M

Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
Then it's not a secure machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
Then it's not a secure machine!

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
then it's a secure voting machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
then it's a secure voting machine!

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

bool isSecureVotingMachine(string program) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

 bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
}

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
then it's a secure voting machine!

What happens if...

… this program is a secure voting machine?
then it's not a secure voting machine!

… this program is not a secure voting machine?
then it's a secure voting machine!

Theorem: The secure voting problem is undecidable.

Proof: By contradiction; assume that the secure voting problem is decidable. Then
there is some decider D for the secure voting problem, which we can represent in
software as a method isSecureVotingMachine that, given as input the source code of
a program, returns true if the program is a secure voting machine and false
otherwise.

Given this, we could then construct the following program P:

 int main() {
 string me = mySource();

 string input = getInput();

 bool answer = (countRs(input) > countDs(input));
 if (isSecureVotingMachine(me)) answer = !answer;

 if (answer) accept();
 else reject();
 }

Now, either P is a secure voting machine or it isn’t. If P is a secure voting machine,
then isSecureVotingMachine(me) will return true. Therefore, when P is run, it will
determine whether w has more r’s than d’s, fip the result, and accept strings with
at least as many d’s as r’s and reject strings with more r’s than d’s. Thus, P is not a
secure voting machine. On the other hand, if P is not a secure voting machine, then
isSecureVotingMachine(me) will return false. Therefore, when P is run, it will accept
all strings with at least as many r’s as d’s and reject all other strings, and so P is a
secure voting machine.

In both cases we reach a contradiction, so our assumption must have been wrong.
Therefore, the secure voting problem is undecidable. ■

Interpreting this Result

● The previous argument tells us that there is no
general algorithm that we can follow to determine
whether a program is a secure voting machine. In
other words, any general algorithm to check voting
machines will always be wrong on at least one input.

● So what can we do?
● Design algorithms that work in some, but not all cases.

(This is often done in practice.)
● Fall back on human verifcation of voting machines. (We do

that too.)
● Carry a healthy degree of skepticism about electronic

voting machines. (Then again, did we even need the
theoretical result for this?)

Beyond R and RE

Beyond R and RE

● We've now seen how to use self-reference
as a tool for showing undecidability
(fnding languages not in R).

● We still have not broken out of RE yet,
though.

● To do so, we will need to build up a
better intuition for the class RE.

What exactly is the class RE?

RE, Formally

● Recall that the class RE is the class of all
recognizable languages:

RE = { L | there is a TM M where (ℒ M) = L }
● Since R ≠ RE, there is no general way to

“solve” problems in the class RE, if by “solve”
you mean “make a computer program that
can always tell you the correct answer.”

● So what exactly are the sorts of languages in
RE?

Does this graph contain a 4-clique?Does this graph contain a 4-clique?

Does this graph contain a 4-clique?Does this graph contain a 4-clique?

Does this graph contain a 4-clique?Does this graph contain a 4-clique?

Key Intuition:

A language L is in RE if, for any string w, if
you are convinced that w ∈ L, there is some
way you could prove that to someone else.

Verifcation

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

Does this Sudoku puzzle
have a solution?

Verifcation

2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

Does this Sudoku puzzle
have a solution?

Verifcation

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

Verifcation

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

1

2

5

4

6

3

Verifcation

Does the hailstone sequence
terminate for this number?

11

Verifcation

Does the hailstone sequence
terminate for this number?

11

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

34

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

17

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

52

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

26

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

13

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

40

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

20

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

10

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

5

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

16

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

8

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

4

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

2

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

1

Try running fourteen steps of the Hailstone sequence.

Verifcation

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

Does this Sudoku puzzle
have a solution?

Verifcation

1

1

3

6

1

8

1

5

1

1

1

1

1

1

1

1

7

1

7

1

1

5

1

2

3

1

4

1

1

1

1

1

1

2

4

1

6

1

1

3

4

1

1

1

8

1

3

5

1

1

1

7

1

1

1

1

9

8

1

5

1

1

7

1

5

1

1

2

1

1

1

1

1

2

7

9

1

4

8

1

1

Does this Sudoku puzzle
have a solution?

Verifcation

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

Verifcation

6

1

5

2

3

4

Does this graph have a Hamiltonian
path (a simple path that passes

through every node exactly once?)

Verifcation

Does the hailstone sequence
terminate for this number?

11

Verifcation

Does the hailstone sequence
terminate for this number?

11

Try running fve steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

34

Try running fve steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

17

Try running fve steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

52

Try running fve steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

26

Try running fve steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

13

Try running fve steps of the Hailstone sequence.

Verifcation

● In each of the preceding cases, we were given
some problem and some evidence supporting
the claim that the answer is “yes.”

● Given the correct evidence, we can be certain
that the answer is indeed “yes.”

● Given incorrect evidence, we aren't sure
whether the answer is “yes.”
● Maybe there's no evidence saying that the answer

is “yes,” or maybe there is some evidence, but just
not the evidence we were given.

● Let's formalize this idea.

Verifers

● A verifer for a language L is a TM V
with the following two properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Intuitively, what does this mean?

Deciders and Verifers

Decider M
for L

Verifer V
for L

yes!

no!

yes!

not
sure

input string (w)

certifcate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩

M halts on all inputs.
w ∈ L ↔ M accepts w

If M accepts, then
w ∈ L.

If M accepts, then
w ∈ L.

If M rejects, then
w ∉ L.

If M rejects, then
w ∉ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V accepts ⟨w, c⟩,
then w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

If V rejects ⟨w, c⟩,
we don't know
whether w ∈ L.

Verifers

● A verifer for a language L is a TM V with the
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V rejects ⟨w, c⟩, then either
– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.

Verifers

● A verifer for a language L is a TM V with the
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● Notice that the certifcate c is existentially
quantifed. Any string w ∈ L must have at least
one c that causes V to accept, and possibly
more.

● V is required to halt, so given any potential
certifcate c for w, you can check whether the
certifcate is correct.

Verifers

● A verifer for a language L is a TM V with the
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● Notice that (ℒ V) ≠ L. (Good question: what is
(ℒ V)?)

● The job of V is just to check certifcates, not to
decide membership in L.

Verifers

● A verifer for a language L is a TM V with the
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● Although this formal defnition works with a
string c, remember that c can be an encoding of
some other object.

● In practice, c will likely just be “some other
auxiliary data that helps you out.”

Some Verifers

● Let L be the following language:

 L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
 terminates for n }

● Let's see how to build a verifer for L.
● This verifer will take as input

● a natural number n, and
● some certifcate c.

● The certifcate c should be some evidence that
suggests that the hailstone sequence terminates for n.

● What evidence could we provide?

Verifcation

Does the hailstone sequence
terminate for this number?

11

Verifcation

Does the hailstone sequence
terminate for this number?

11

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

34

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

17

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

52

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

26

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

13

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

40

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

20

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

10

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

5

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

16

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

8

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

4

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

2

Try running fourteen steps of the Hailstone sequence.

Verifcation

Does the hailstone sequence
terminate for this number?

1

Try running fourteen steps of the Hailstone sequence.

Some Verifers

● Let L be the following language:

 L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
 terminates for n }

● Do you see why ⟨n⟩ ∈ L if there is some c such
that checkHailstone(n, c) returns true?

● Do you see why checkHailstone always halts?

bool checkHailstone(int n, int c) {
 for (int i = 0; i < c; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }
 return n == 1;
}

bool checkHailstone(int n, int c) {
 for (int i = 0; i < c; i++) {
 if (n % 2 == 0) n /= 2;
 else n = 3*n + 1;
 }
 return n == 1;
}

Some Verifers

● Let L be the following language:

 L = { ⟨G⟩ | G is a graph and G has a
 Hamiltonian path }

● (Refresher: a Hamiltonian path is a simple path that
visits every node in the graph.)

● Let's see how to build a verifer for L.
● Our verifer will take as input

● a graph G, and
● a certifcate c.

● The certifcate c should be some evidence that
suggests that G has a Hamiltonian path.

● What information could we put into the certifcate?

Verifcation

Is there a simple path that goes
through every node exactly once?

Verifcation

Is there a simple path that goes
through every node exactly once?

1

2

5

4

6

3

Some Verifers

● Let L be the following language:

L = { ⟨G⟩ | G is a graph with a Hamiltonian path }

● Do you see why ⟨G⟩ ∈ L if there is a c where
checkHamiltonian(G, c) returns true?

● Do you see why checkHamiltonian always halts?

bool checkHamiltonian(Graph G, vector<Node> c) {
 if (c.size() != G.numNodes()) return false;
 if (containsDuplicate(c)) return false;

 for (size_t i = 0; i + 1 < c.size(); i++) {
 if (!G.hasEdge(c[i], c[i+1])) return false;
 }
 return true;
}

bool checkHamiltonian(Graph G, vector<Node> c) {
 if (c.size() != G.numNodes()) return false;
 if (containsDuplicate(c)) return false;

 for (size_t i = 0; i + 1 < c.size(); i++) {
 if (!G.hasEdge(c[i], c[i+1])) return false;
 }
 return true;
}

A Very Nifty Verifer

● Consider ATM:

 ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● This is a canonical example of an undecidable
language. There’s no way, in general, to tell
whether a TM M will accept a string w.

● Although this language is undecidable, it’s an
RE language, and it’s possible to build a
verifer for it!

A Very Nifty Verifer

● Consider ATM:

 ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● We know that UTM is a recognizer for ATM. It is
also a verifer for ATM?

● No, for two reasons:

● UTM doesn’t always halt. (Do you see why?)

● UTM takes as input a TM M and a string w. A
verifer also needs a certifcate.

A Very Nifty Verifer

● Consider ATM:

 ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● A verifer for ATM would take as input

● A TM M,
● a string w, and
● a certifcate c.

● The certifcate c should be some evidence that
suggests that M accepts w.

● What could our certifcate be?

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 0 1 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 0 1 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 0 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… 1 …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… …

Run this TM
for ffteen

steps.

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

1 → , L☐

0 → 0, R
 → ☐ ☐, R

 → ☐ ☐, R

q
rej

q
acc

start

… …

Run this TM
for ffteen

steps.

Some Verifers

● Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● Do you see why M accepts w if there is some c
such that checkWillAccept(M, w, c) returns true?

● Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on w;
 }
 return whether M is in an accepting state;
}

bool checkWillAccept(TM M, string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on w;
 }
 return whether M is in an accepting state;
}

What languages are verifable?

Theorem: If L is a language, then there is
a verifer for L if and only if L ∈ RE.

Where We’ve Been

NFA Regex

State Elimination

Thompson’s Algorithm

Where We’re Going

Verifer Recognizer

Try all certifcates

Enforce a step count

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

Verifers and RE

Requirements on a verifer V for L:

V halts on all inputs.
∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Requirements on a verifer V for L:

V halts on all inputs.
∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Requirements on a recognizer M for L:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

Requirements on a recognizer M for L:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

ε a b aa ab ba bb aaa aab aba abb baa …

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If there is a verifer V for a language
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L,
fnd a way to construct a recognizer M for L.

ε a b aa ab ba bb aaa aab aba abb baa …

Verifer V
for L

yes!

not
sure

input string (w)

certifcate (c)

“Check the answer”

Verifers and RE

● Theorem: If V is a verifer for L, then L ∈ RE.
● Proof sketch: Consider the following program:

If w ∈ L, there is some c ∈ Σ* where V accepts ⟨w, c⟩.
The function isInL tries all possible strings as
certifcates, so it will eventually fnd c (or some other
certifcate), see V accept ⟨w, c⟩, then return true.
Conversely, if isInL(w) returns true, then there was
some string c such that V accepted ⟨w, c⟩, so w ∈ L. ■

bool isInL(string w) {
 for (each string c) {
 if (V accepts w, c) ⟨ ⟩ return true;
 }
}

bool isInL(string w) {
 for (each string c) {
 if (V accepts w, c) ⟨ ⟩ return true;
 }
}

Verifers and RE

● Theorem: If L ∈ RE, then there is a verifer for L.
● Proof goal: Beginning with a recognizer M for

the language L, show how to construct a verifer
V for L.

Requirements on a verifer V for L:

V halts on all inputs.
∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Requirements on a verifer V for L:

V halts on all inputs.
∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Requirements on a recognizer M for L:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

Requirements on a recognizer M for L:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

We have a recognizer for a language.
We want to turn it into a verifer.
Where did we see this before?

Some Verifers

Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

Do you see why M accepts w if there is some c
such that checkWillAccept(M, w, c) returns true?

Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on w;
 }
 return whether M is in an accepting state;
}

bool checkWillAccept(TM M, string w, int c) {
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on w;
 }
 return whether M is in an accepting state;
}

Observation: This
trick of enforcing a

step count limits how
long M can run for!

Observation: This
trick of enforcing a

step count limits how
long M can run for!

Verifers and RE
● Theorem: If L ∈ RE, then there is a verifer for L.
● Proof sketch: Let L be a RE language and let M be a recognizer

for it. Consider this function:

Note that checkIsInL always halts, since each step takes only fnite
time to complete. Next, notice that if there is a c where
checkIsInL(w, c) returns true, then M accepted w after running for
c steps, so w ∈ L. Conversely, if w ∈ L, then M accepts w after
some number of steps (call that number c). Then checkIsInL(w, c)
will run M on w for c steps, watch M accept w, then return true. ■

 bool checkIsInL(string w, int c) {
 TM M = /* hardcoded version of a recognizer for L */;
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on W;
 }
 return whether M is in an accepting state;
 }

 bool checkIsInL(string w, int c) {
 TM M = /* hardcoded version of a recognizer for L */;
 set up a simulation of M running on w;
 for (int i = 0; i < c; i++) {
 simulate the next step of M running on W;
 }
 return whether M is in an accepting state;
 }

RE and Proofs

● Verifers and recognizers give two diferent
perspectives on the “proof” intuition for RE.

● Verifers are explicitly built to check proofs that
strings are in the language.
● If you know that some string w belongs to the

language and you have the proof of it, you can
convince someone else that w ∈ L.

● You can think of a recognizer as a device that
“searches” for a proof that w ∈ L.
● If it fnds it, great!
● If not, it might loop forever.

RE and Proofs

● If the RE languages represent languages
where membership can be proven, what
does a non-RE language look like?

● Intuitively, a language is not in RE if
there is no general way to prove that a
given string w ∈ L actually belongs to L.

● In other words, even if you knew that a
string was in the language, you may
never be able to convince anyone of it!

Time-Out for Announcements!

Problem Sets

● Problem Set Six is due this Friday at 3:00PM.
● You can use late days here to extend the deadline as

far as Sunday at 3:00PM, but we don’t recommend
this.

● Problem Set Seven goes out on Friday. It’s due
next Wednesday at 3:00PM.
● PS7 is shorter and designed to be able to be

completed in 5 days.
● Due to university policies, no late submissions

will be accepted for PS7. Please budget at least
two hours before the deadline to submit the
assignment.

The Last Guide

● We’ve posted the fnal guide on the
course website:
● The Guide to the Lava Diagram, which

provides an intuition for how diferent
classes of languages relate to one another.

● Give this a read – there’s a ton of useful
information in there!

Final Exam Logistics

● Our fnal exam is Friday, August 16th from 7PM –
10PM in Bishop Auditorium.

● The exam is cumulative. You’re responsible for
topics from PS0 – PS7 and all of the lectures up
through and including today’s.

● The exam is closed-book, closed-computer, and
limited-note. You can bring one double-sided sheet
of 8.5” × 11” notes with you to the exam, decorated
any way you’d like.

● Students with OAE accommodations: if we don’t yet
have your OAE letter, please send it to us ASAP.

Preparing for the Exam

● We’ve posted a practice fnal exam, with
solutions, to the course website. It’s on
the Extra Practice page under Resources.
● We’ll be posting a few more practice exams

over the next day or so!
● Review Session on Monday, August 12th

here during class, led by your lovely TAs!
● Practice Final on Wednesday, August

14th from 5:30-8:30 PM upstairs in Gates
104.

Back to CS103!

Finding Non-RE Languages

Finding Non-RE Languages

● Right now, we know that non-RE
languages exist, but we have no idea
what they look like.

● How might we fnd one?

Languages, TMs, and TM Encodings

● Recall: The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M accepts w }
● Some of the strings in this set might be

descriptions of TMs.
● What happens if we list of all Turing

machines, looking at how those TMs
behave given other TMs as input?

M₁

M₂

M₀

M₃

M₄

M₅

…

All Turing machines,
listed in some order.
All Turing machines,
listed in some order.

M₁

M₂

M₀

M₃

M₄

M₅

…

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

All descriptions
of TMs, listed
in the same

order.

All descriptions
of TMs, listed
in the same

order.

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

Flip all
“accept” to

“no” and vice-
versa

Flip all
“accept” to

“no” and vice-
versa

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

What TM has
this behavior?
What TM has
this behavior?

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc

No

Acc

No

No Acc

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No No …

… … … … … … …

No No No Acc Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Acc

No

No

Acc

Acc

No

No

…

Acc …

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … … …

No No No Acc …

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

…

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

No TM has
this

behavior!

No TM has
this

behavior!

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

“The language of all
TMs that do not accept

their descriptions.”

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

{ ⟨M⟩ | M is a TM that
does not accept ⟨M⟩ }

⟨M₀⟩ ⟨M₁⟩ ⟨M₂⟩ ⟨M₃⟩ ⟨M₄⟩ ⟨M₅⟩ …

M₁

M₂

M₀

M₃

M₄

M₅

…

Diagonalization Revisited

● The diagonalization language, which we
denote LD, is defned as

LD = { ⟨M⟩ | M is a TM and M does not accept ⟨M⟩ }

● We constructed this language to be
diferent from the language of every TM.

● Therefore, LD ∉ RE! Let’s go prove this.

LD = { ⟨M⟩ | M is a TM and M does not accept ⟨M⟩ }

Theorem: LD ∉ RE.

Proof: By contradiction; assume that LD ∈ RE. This means that
there is a TM R where (ℒ R) = LD.

Now, what happens when we run R on ⟨R⟩? We know that

 R accepts ⟨R⟩ if and only if ⟨R⟩ ∈ (ℒ R).

Since (ℒ R) = LD, the above expression simplifes to

 R accepts ⟨R⟩ if and only if ⟨R⟩ ∈ LD.

Finally, by defnition of LD, we know that ⟨R⟩ ∈ LD if and only if
R does not accept ⟨R⟩. Therefore, we see that

 R accepts ⟨R⟩ if and only if R doesn’t accept ⟨R⟩.

This is impossible. We’ve reached a contradiction, so our
assumption was wrong, and so LD ∉ RE. ■

Regular
Languages CFLs

All Languages

R RE

LD

ATM

HALT

What This Means

● On a deeper philosophical level, the fact that non-
RE languages exist supports the following claim:

There are statements that
are true but not provable.

● Intuitively, given any non-RE language, there will
be some string in the language that cannot be
proven to be in the language.

● This result can be formalized as a result called
Gödel's incompleteness theorem, one of the
most important mathematical results of all time.

● Want to learn more? Take Phil 152 or CS154!

What This Means

● On a more philosophical note, you could interpret
the previous result in the following way:

There are inherent limits about what
mathematics can teach us.

● There's no automatic way to do math. There are
true statements that we can't prove.

● That doesn't mean that mathematics is worthless.
It just means that we need to temper our
expectations about it.

Where We Stand

● We've just done a crazy, whirlwind tour of computability
theory:
● The Church-Turing thesis tells us that TMs give us a

mechanism for studying computation in the abstract.
● Universal computers – computers as we know them – are not

just a stroke of luck. The existence of the universal TM ensures
that such computers must exist.

● Self-reference is an inherent consequence of computational
power.

● Undecidable problems exist partially as a consequence of the
above and indicate that there are statements whose truth can't
be determined by computational processes.

● Unrecognizable problems are out there and can be discovered
via diagonalization. They imply there are limits to mathematical
proof.

The Big Picture

DFA

NFA

Regex

CFG Decider

Recog-
nizer

Verifer

REG

CFL
R

RE

Where We've Been

● The class R represents problems that can be
solved by a computer.

● The class RE represents problems where “yes”
answers can be verifed by a computer.

The mapping reduction can be used to fnd
connections between problems.

Where We're Going

● The class P represents problems that can be
solved eficiently by a computer.

● The class NP represents problems where “yes”
answers can be verifed eficiently by a
computer.

Next Time

● Introduction to Complexity Theory
● Not all decidable problems are created

equal!

● The Classes P and NP
● Two fundamental and important complexity

classes.

● The P NP Question≟

● A literal million-dollar question!

This is the end of the content we’ll be
testing you on for the fnal exam!

The next two lectures on Complexity
Theory are purely for your own interest.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229

