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Outline for Today

● Recap from Last Time
● Where are we, again?

● A Diferent Perspective on RE
● What exactly does “recognizability” mean?

● Verifers
● A new approach to problem-solving.

● Beyond RE
● A beautiful example of an impossible problem.



  

Recap from Last Time



  

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT called the 
universal Turing machine that, when run on an input of the form 
⟨M, w⟩, where M is a Turing machine and w is a string, simulates M 
running on w and does whatever M does on w (accepts, rejects, or loops).

● The observable behavior of U TM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

● If M rejects w, then UTM rejects ⟨M, w⟩.

● If M loops on w, then UTM loops on ⟨M, w⟩.
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Self-Referential Programs

● Claim: Any program can be augmented 
to include a method called mySource() that 
returns a string representation of its 
source code.

● Theorem: It it possible to build Turing 
machines that get their own encodings 
and perform arbitrary computations on 
them.



  

What does this program do?

bool willAccept(string program, string input) {
   /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
   /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

What happens if...

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What happens if...

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!
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New Stuf!



  

More Impossibility Results



  

The Halting Problem

● The most famous undecidable problem is the 
halting problem, which asks:

Given a TM M and a string w,
will M halt when run on w? 

● As a formal language, this problem would be 
expressed as

HALT = { ⟨M, w⟩ | M is a TM that halts on w } 
● This is an RE language. (We’ll see why later.)
● How do we know that it’s undecidable?



  

Claim: A decider for HALT is a self-
defeating object. It therefore doesn’t exist.



  

A Decider for HALT

● Let’s suppose that, somehow, we managed to build a 
decider for HALT = { ⟨M, w⟩ | M is a TM that halts on w }. 

● Schematically, that decider would look like this:

  

● We could represent this decider in software as a method

bool willHalt(string program, string input);

that takes as input a program and a string, then returns 
whether that program will halt on that string.

Decider
for HALT

M

w

Yes, M halts on w.

No, M loops on w.



  

What does this program do?

bool willHalt(string program, string input) {
   /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

// loop infinitely
}

} else {
accept();

}
}
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}
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string input = getInput();
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}
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Imagine running this program on 
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What does this program do?
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Theorem: HALT ∉ R.

Proof: By contradiction; assume that HALT ∈ R. Then there’s a decider
D for HALT, which we can represent in software as a method willHalt
that takes as input the source code of a program and an input, then
returns true if the program halts on the input and false otherwise.

Given this, we could then construct this program P:

        int main() {
            string me = mySource();
            string input = getInput();
 
            if (willHalt(me, input)) while (true) { /* loop! */ }
            else accept();
        } 

Choose any string w and trace through the execution of program P on 
input w, focusing on the answer given back by the willHalt method. If 
willHalt(me, input) returns true, then P must halt on its input w. 
However, in this case P proceeds to loop infnitely on w. Otherwise, if 
willHalt(me, input) returns false, then P must not halt its input w. 
However, in this case P proceeds to accept its input w.

In both cases we reach a contradiction, so our assumption must have 
been wrong. Therefore, HALT ∉ R. ■



  

HALT ∈ RE

● Claim: HALT ∈ RE.
● Idea: If you were certain that a TM M halted on a 

string w, could you convince me of that?
● Yes – just run M on w and see what happens!

int main() {
TM M = getInputTM();
string w = getInputString();

feed w into M;
while (true) {

if (M is in an accepting state) accept();
else if (M is in a rejecting state) accept();
else simulate one more step of M running on w;

}
}

int main() {
TM M = getInputTM();
string w = getInputString();

feed w into M;
while (true) {

if (M is in an accepting state) accept();
else if (M is in a rejecting state) accept();
else simulate one more step of M running on w;

}
}
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So What?

● These problems might not seem all that 
exciting, so who cares if we can't solve 
them?

● Turns out, this same line of reasoning 
can be used to show that some very 
important problems are impossible to 
solve.



  

Secure Voting

● Suppose that you want to make a voting 
machine for use in an election between two 
parties.

● Let Σ = {r, d}. A string in w corresponds to 
a series of votes for the candidates.

● Example: rrdddrd means “two people voted 
for r, then three people voted for d, then 
one more person voted for r, then one more 
person voted for d.”



  

Secure Voting

● A voting machine is a program that takes 
as input a string of r's and d's, then 
reports whether person r won the 
election.

● Question: Given a TM that someone 
claims is a secure voting machine, could 
we automatically check whether it 
actually is a secure voting machine?



  

int main() {
   string input = getInput();
   int numRs = countRsIn(input);
   int numDs = countDsIn(input);

   if (numRs > numDs) accept();
   else reject();
}

int main() {
   string input = getInput();

   if (input[0] == 'r') accept();
   else reject();
}

int main() {
   string input = getInput();
   int numRs = countRsIn(input);
   int numDs = countDsIn(input);

   if (numRs = numDs) reject();
   else if (numRs < numDs) reject();
   else accept();
}

int main() {
   string input = getInput();
 

   int n = input.length();
   while (n > 1) {
      if (n % 2 == 0) n /= 2;
      else n = 3*n + 1;
   }
 

   int numRs = countRsIn(input);
   int numDs = countDsIn(input);
 

   if (numRs > numDs) accept();
   else reject();
}

A (simple) secure voting machine. A (simple) insecure voting machine.

An (evil) insecure voting machine. No one knows!

A secure voting machine is a TM M where
ℒ(M) = { w ∈ Σ* | w has more r’s than d’s }



  

Secure Voting

● A voting machine is a program that takes 
as input a string of r's and d's, then 
reports whether person r won the 
election.

● Question: Given a TM that someone 
claims is a secure voting machine, could 
we automatically check whether it 
actually is a secure voting machine?



  

Claim: A program that decides whether 
arbitrary input programs are secure voting 

machines is self-defeating. It therefore 
doesn’t exist.



  

A Decider for Secure Voting

● Let’s suppose that, somehow, we managed to build a 
decider for the secure voting problem.

● Schematically, that decider would look like this:

  

● We could represent this decider in software as a method

bool isSecureVotingMachine(string program);

that takes as input a program, then returns whether that 
program is a secure voting machine.

Decider
for secure

voting

M

Yes, M is a secure voting
machine.

No, M is not a secure 
voting machine.



  

bool isSecureVotingMachine(string program) {
   /* … some implementation … */
}
 

int main() {
string me = mySource();
string input = getInput();

 

   bool answer = countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) answer = !answer;

   if (answer) accept();
   else reject();
}
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}
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Theorem: The secure voting problem is undecidable.

Proof: By contradiction; assume that the secure voting problem is decidable. Then
there is some decider D for the secure voting problem, which we can represent in
software as a method isSecureVotingMachine that, given as input the source code of
a program, returns true if the program is a secure voting machine and false
otherwise.

Given this, we could then construct the following program P:

         int main() {
          string me = mySource();

         string input = getInput();
 

         bool answer = (countRs(input) > countDs(input));
         if (isSecureVotingMachine(me)) answer = !answer;

 
         if (answer) accept();
         else reject();
     }

Now, either P is a secure voting machine or it isn’t. If P is a secure voting machine, 
then isSecureVotingMachine(me) will return true. Therefore, when P is run, it will 
determine whether w has more r’s than d’s, fip the result, and accept strings with 
at least as many d’s as r’s and reject strings with more r’s than d’s. Thus, P is not a 
secure voting machine. On the other hand, if P is not a secure voting machine, then 
isSecureVotingMachine(me) will return false. Therefore, when P is run, it will accept 
all strings with at least as many r’s as d’s and reject all other strings, and so P is a 
secure voting machine.

In both cases we reach a contradiction, so our assumption must have been wrong. 
Therefore, the secure voting problem is undecidable. ■



  

Interpreting this Result

● The previous argument tells us that there is no 
general algorithm that we can follow to determine 
whether a program is a secure voting machine. In 
other words, any general algorithm to check voting 
machines will always be wrong on at least one input.

● So what can we do?
● Design algorithms that work in some, but not all cases. 

(This is often done in practice.)
● Fall back on human verifcation of voting machines. (We do 

that too.)
● Carry a healthy degree of skepticism about electronic 

voting machines. (Then again, did we even need the 
theoretical result for this?)



  



  

Beyond R and RE



  

Beyond R and RE

● We've now seen how to use self-reference 
as a tool for showing undecidability 
(fnding languages not in R).

● We still have not broken out of RE yet, 
though.

● To do so, we will need to build up a 
better intuition for the class RE.



  

What exactly is the class RE?



  

RE, Formally

● Recall that the class RE is the class of all 
recognizable languages:

RE = { L | there is a TM M where (ℒ M) = L }
● Since R ≠ RE, there is no general way to 

“solve” problems in the class RE, if by “solve” 
you mean “make a computer program that 
can always tell you the correct answer.”

● So what exactly are the sorts of languages in 
RE?



  

Does this graph contain a 4-clique?Does this graph contain a 4-clique?



  

Does this graph contain a 4-clique?Does this graph contain a 4-clique?



  

Does this graph contain a 4-clique?Does this graph contain a 4-clique?



  

Key Intuition:

A language L is in RE if, for any string w, if 
you are convinced that w ∈ L, there is some 
way you could prove that to someone else.



  

Verifcation
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Verifcation
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Verifcation

Does this graph have a Hamiltonian 
path (a simple path that passes 

through every node exactly once?)
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Verifcation
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Verifcation

Does this graph have a Hamiltonian 
path (a simple path that passes 

through every node exactly once?)
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Verifcation
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11

Try running fve steps of the Hailstone sequence.



  

Verifcation
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34

Try running fve steps of the Hailstone sequence.



  

Verifcation

Does the hailstone sequence 
terminate for this number?

17

Try running fve steps of the Hailstone sequence.



  

Verifcation

Does the hailstone sequence 
terminate for this number?

52

Try running fve steps of the Hailstone sequence.



  

Verifcation

Does the hailstone sequence 
terminate for this number?

26

Try running fve steps of the Hailstone sequence.



  

Verifcation

Does the hailstone sequence 
terminate for this number?

13

Try running fve steps of the Hailstone sequence.



  

Verifcation

● In each of the preceding cases, we were given 
some problem and some evidence supporting 
the claim that the answer is “yes.”

● Given the correct evidence, we can be certain 
that the answer is indeed “yes.”

● Given incorrect evidence, we aren't sure 
whether the answer is “yes.”
● Maybe there's no evidence saying that the answer 

is “yes,” or maybe there is some evidence, but just 
not the evidence we were given.

● Let's formalize this idea.



  

Verifers

● A verifer for a language L is a TM V 
with the following two properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Intuitively, what does this mean?



  

Deciders and Verifers

Decider M
for L

Verifer V
for L

yes!

no!

yes!

not
sure

input string (w)

certifcate (c)

input string (w)

“Solve the problem”

“Check the answer”

V halts on all inputs.
w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩ 

M halts on all inputs.
w ∈ L ↔ M accepts w 

If M accepts, then 
w ∈ L.

If M accepts, then 
w ∈ L.

If M rejects, then 
w ∉ L.

If M rejects, then 
w ∉ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V accepts ⟨w, c⟩, 
then w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.

If V rejects ⟨w, c⟩, 
we don't know 
whether w ∈ L.



  

Verifers

● A verifer for a language L is a TM V with the 
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V rejects ⟨w, c⟩, then either
– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.



  

Verifers

● A verifer for a language L is a TM V with the 
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● Notice that the certifcate c is existentially 
quantifed. Any string w ∈ L must have at least 
one c that causes V to accept, and possibly 
more.

● V is required to halt, so given any potential 
certifcate c for w, you can check whether the 
certifcate is correct.



  

Verifers

● A verifer for a language L is a TM V with the 
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● Notice that (ℒ V) ≠ L. (Good question: what is 
(ℒ V)?)

● The job of V is just to check certifcates, not to 
decide membership in L.



  

Verifers

● A verifer for a language L is a TM V with the 
following properties:

V halts on all inputs.

∀w ∈ Σ*. (w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩)

● Some notes about V:

● Although this formal defnition works with a 
string c, remember that c can be an encoding of 
some other object.

● In practice, c will likely just be “some other 
auxiliary data that helps you out.”



  

Some Verifers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

● Let's see how to build a verifer for L.
● This verifer will take as input

● a natural number n, and 
● some certifcate c.

● The certifcate c should be some evidence that 
suggests that the hailstone sequence terminates for n.

● What evidence could we provide?



  

Verifcation

Does the hailstone sequence 
terminate for this number?

11
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Does the hailstone sequence 
terminate for this number?

11

Try running fourteen steps of the Hailstone sequence.



  

Verifcation
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Try running fourteen steps of the Hailstone sequence.
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40

Try running fourteen steps of the Hailstone sequence.
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Try running fourteen steps of the Hailstone sequence.



  

Verifcation

Does the hailstone sequence 
terminate for this number?

10

Try running fourteen steps of the Hailstone sequence.



  

Verifcation

Does the hailstone sequence 
terminate for this number?

5

Try running fourteen steps of the Hailstone sequence.



  

Verifcation

Does the hailstone sequence 
terminate for this number?

16

Try running fourteen steps of the Hailstone sequence.



  

Verifcation

Does the hailstone sequence 
terminate for this number?

8

Try running fourteen steps of the Hailstone sequence.



  

Verifcation

Does the hailstone sequence 
terminate for this number?

4

Try running fourteen steps of the Hailstone sequence.



  

Verifcation

Does the hailstone sequence 
terminate for this number?

2

Try running fourteen steps of the Hailstone sequence.



  

Verifcation

Does the hailstone sequence 
terminate for this number?

1

Try running fourteen steps of the Hailstone sequence.



  

Some Verifers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

  

 

● Do you see why ⟨n⟩ ∈ L if there is some c such 
that checkHailstone(n, c) returns true?

● Do you see why checkHailstone always halts?

bool checkHailstone(int n, int c) {
   for (int i = 0; i < c; i++) {
      if (n % 2 == 0) n /= 2;
      else n = 3*n + 1;
   }
   return n == 1;
}

bool checkHailstone(int n, int c) {
   for (int i = 0; i < c; i++) {
      if (n % 2 == 0) n /= 2;
      else n = 3*n + 1;
   }
   return n == 1;
}



  

Some Verifers

● Let L be the following language:

    L = { ⟨G⟩ | G is a graph and G has a
                      Hamiltonian path }

● (Refresher: a Hamiltonian path is a simple path that 
visits every node in the graph.)

● Let's see how to build a verifer for L.
● Our verifer will take as input

● a graph G, and
● a certifcate c.

● The certifcate c should be some evidence that 
suggests that G has a Hamiltonian path.

● What information could we put into the certifcate?



  

Verifcation

Is there a simple path that goes 
through every node exactly once?



  

Verifcation

Is there a simple path that goes 
through every node exactly once?
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Some Verifers

● Let L be the following language:

L = { ⟨G⟩ | G is a graph with a Hamiltonian path }

  

 

 

● Do you see why ⟨G⟩ ∈ L if there is a c where 
checkHamiltonian(G, c) returns true?

● Do you see why checkHamiltonian always halts?

bool checkHamiltonian(Graph G, vector<Node> c) {
   if (c.size() != G.numNodes()) return false;
   if (containsDuplicate(c)) return false;

   for (size_t i = 0; i + 1 < c.size(); i++) {
       if (!G.hasEdge(c[i], c[i+1])) return false;
   }
   return true;
}

bool checkHamiltonian(Graph G, vector<Node> c) {
   if (c.size() != G.numNodes()) return false;
   if (containsDuplicate(c)) return false;

   for (size_t i = 0; i + 1 < c.size(); i++) {
       if (!G.hasEdge(c[i], c[i+1])) return false;
   }
   return true;
}



  

A Very Nifty Verifer

● Consider ATM:

  ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● This is a canonical example of an undecidable 
language. There’s no way, in general, to tell 
whether a TM M will accept a string w.

● Although this language is undecidable, it’s an 
RE language, and it’s possible to build a 
verifer for it!



  

A Very Nifty Verifer

● Consider ATM:

  ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● We know that UTM is a recognizer for ATM. It is 
also a verifer for ATM?

● No, for two reasons:

● UTM doesn’t always halt. (Do you see why?)

● UTM takes as input a TM M and a string w. A 
verifer also needs a certifcate.



  

A Very Nifty Verifer

● Consider ATM:

  ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

● A verifer for ATM would take as input

● A TM M,
● a string w, and
● a certifcate c.

● The certifcate c should be some evidence that 
suggests that M accepts w.

● What could our certifcate be?
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Some Verifers

● Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

  

 

● Do you see why M accepts w if there is some c 
such that checkWillAccept(M, w, c) returns true?

● Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
}

bool checkWillAccept(TM M, string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
}



  

What languages are verifable?



  

Theorem: If L is a language, then there is 
a verifer for L if and only if L ∈ RE.



  

Where We’ve Been

NFA Regex

State Elimination

Thompson’s Algorithm



  

Where We’re Going

Verifer Recognizer

Try all certifcates

Enforce a step count



  

● Theorem: If there is a verifer V for a language 
L, then L ∈ RE.

● Proof goal: Given a verifer V for a language L, 
fnd a way to construct a recognizer M for L.

Verifers and RE

Requirements on a verifer V for L:

V halts on all inputs.
∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Requirements on a verifer V for L:

V halts on all inputs.
∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Requirements on a recognizer M for L:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

Requirements on a recognizer M for L:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)
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Verifers and RE

● Theorem: If V is a verifer for L, then L ∈ RE.
● Proof sketch: Consider the following program:

  

 

 

If w ∈ L, there is some c ∈ Σ* where V accepts ⟨w, c⟩. 
The function isInL tries all possible strings as 
certifcates, so it will eventually fnd c (or some other 
certifcate), see V accept ⟨w, c⟩, then return true. 
Conversely, if isInL(w) returns true, then there was 
some string c such that V accepted ⟨w, c⟩, so w ∈ L. ■

bool isInL(string w) {
   for (each string c) {
      if (V accepts w, c ) ⟨ ⟩ return true;
   }
}

bool isInL(string w) {
   for (each string c) {
      if (V accepts w, c ) ⟨ ⟩ return true;
   }
}



  

Verifers and RE

● Theorem: If L ∈ RE, then there is a verifer for L.
● Proof goal: Beginning with a recognizer M for 

the language L, show how to construct a verifer 
V for L.

Requirements on a verifer V for L:

V halts on all inputs.
∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Requirements on a verifer V for L:

V halts on all inputs.
∀w ∈ Σ*. (w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩)

Requirements on a recognizer M for L:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

Requirements on a recognizer M for L:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)



  

We have a recognizer for a language.
We want to turn it into a verifer.
Where did we see this before?



  

Some Verifers

Consider ATM:

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }.

  

 

Do you see why M accepts w if there is some c 
such that checkWillAccept(M, w, c) returns true?

Do you see why checkWillAccept always halts?

bool checkWillAccept(TM M, string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
}

bool checkWillAccept(TM M, string w, int c) {
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on w;
    }
    return whether M is in an accepting state;
}

Observation: This 
trick of enforcing a 

step count limits how 
long M can run for!

Observation: This 
trick of enforcing a 

step count limits how 
long M can run for!



  

Verifers and RE
● Theorem: If L ∈ RE, then there is a verifer for L.
● Proof sketch: Let L be a RE language and let M be a recognizer 

for it. Consider this function:

  

 

 

 

Note that checkIsInL always halts, since each step takes only fnite 
time to complete. Next, notice that if there is a c where 
checkIsInL(w, c) returns true, then M accepted w after running for 
c steps, so w ∈ L. Conversely, if w ∈ L, then M accepts w after 
some number of steps (call that number c). Then checkIsInL(w, c) 
will run M on w for c steps, watch M accept w, then return true. ■

 bool checkIsInL(string w, int c) {
    TM M = /* hardcoded version of a recognizer for L */;
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on W;
    }
    return whether M is in an accepting state;
 }

 bool checkIsInL(string w, int c) {
    TM M = /* hardcoded version of a recognizer for L */;
    set up a simulation of M running on w;
    for (int i = 0; i < c; i++) {
       simulate the next step of M running on W;
    }
    return whether M is in an accepting state;
 }



  

RE and Proofs

● Verifers and recognizers give two diferent 
perspectives on the “proof” intuition for RE.

● Verifers are explicitly built to check proofs that 
strings are in the language.
● If you know that some string w belongs to the 

language and you have the proof of it, you can 
convince someone else that w ∈ L.

● You can think of a recognizer as a device that 
“searches” for a proof that w ∈ L.
● If it fnds it, great!
● If not, it might loop forever.



  

RE and Proofs

● If the RE languages represent languages 
where membership can be proven, what 
does a non-RE language look like?

● Intuitively, a language is not in RE if 
there is no general way to prove that a 
given string w ∈ L actually belongs to L.

● In other words, even if you knew that a 
string was in the language, you may 
never be able to convince anyone of it!



  

Time-Out for Announcements!



  

Problem Sets

● Problem Set Six is due this Friday at 3:00PM.
● You can use late days here to extend the deadline as 

far as Sunday at 3:00PM, but we don’t recommend 
this.

● Problem Set Seven goes out on Friday. It’s due 
next Wednesday at 3:00PM.
● PS7 is shorter and designed to be able to be 

completed in 5 days. 
● Due to university policies, no late submissions 

will be accepted for PS7. Please budget at least 
two hours before the deadline to submit the 
assignment.



  

The Last Guide

● We’ve posted the fnal guide on the 
course website:
● The Guide to the Lava Diagram, which 

provides an intuition for how diferent 
classes of languages relate to one another.

● Give this a read – there’s a ton of useful 
information in there!



  

Final Exam Logistics

● Our fnal exam is Friday, August 16th from 7PM – 
10PM in Bishop Auditorium.

● The exam is cumulative. You’re responsible for 
topics from PS0 – PS7 and all of the lectures up 
through and including today’s.

● The exam is closed-book, closed-computer, and 
limited-note. You can bring one double-sided sheet 
of 8.5” × 11” notes with you to the exam, decorated 
any way you’d like.

● Students with OAE accommodations: if we don’t yet 
have your OAE letter, please send it to us ASAP.



  

Preparing for the Exam

● We’ve posted a practice fnal exam, with 
solutions, to the course website. It’s on 
the Extra Practice page under Resources.
● We’ll be posting a few more practice exams 

over the next day or so!
● Review Session on Monday, August 12th 

here during class, led by your lovely TAs! 
● Practice Final on Wednesday, August 

14th from 5:30-8:30 PM upstairs in Gates 
104. 



  

Back to CS103!



  

Finding Non-RE Languages



  

Finding Non-RE Languages

● Right now, we know that non-RE 
languages exist, but we have no idea 
what they look like.

● How might we fnd one?



  

Languages, TMs, and TM Encodings

● Recall: The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M accepts w }     
● Some of the strings in this set might be 

descriptions of TMs.
● What happens if we list of all Turing 

machines, looking at how those TMs 
behave given other TMs as input?
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All Turing machines, 
listed in some order.
All Turing machines, 
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Diagonalization Revisited

● The diagonalization language, which we 
denote LD, is defned as

LD = { ⟨M⟩ | M is a TM and M does not accept ⟨M⟩ }

● We constructed this language to be 
diferent from the language of every TM.

● Therefore, LD ∉ RE! Let’s go prove this.



  

LD = { ⟨M⟩ | M is a TM and M does not accept ⟨M⟩ }

Theorem: LD ∉ RE.

Proof: By contradiction; assume that LD ∈ RE. This means that
there is a TM R where (ℒ R) = LD.

Now, what happens when we run R on ⟨R⟩? We know that

   R accepts ⟨R⟩ if and only if ⟨R⟩ ∈ (ℒ R).

Since (ℒ R) = LD, the above expression simplifes to

    R accepts ⟨R⟩ if and only if ⟨R⟩ ∈ LD.

Finally, by defnition of LD, we know that ⟨R⟩ ∈ LD if and only if 
R does not accept ⟨R⟩. Therefore, we see that

    R accepts ⟨R⟩ if and only if R doesn’t accept ⟨R⟩.

This is impossible. We’ve reached a contradiction, so our 
assumption was wrong, and so LD ∉ RE. ■
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What This Means

● On a deeper philosophical level, the fact that non-
RE languages exist supports the following claim:

There are statements that
are true but not provable.

● Intuitively, given any non-RE language, there will 
be some string in the language that cannot be 
proven to be in the language.

● This result can be formalized as a result called 
Gödel's incompleteness theorem, one of the 
most important mathematical results of all time.

● Want to learn more? Take Phil 152 or CS154!



  

What This Means

● On a more philosophical note, you could interpret 
the previous result in the following way:

There are inherent limits about what 
mathematics can teach us.

● There's no automatic way to do math. There are 
true statements that we can't prove.

● That doesn't mean that mathematics is worthless. 
It just means that we need to temper our 
expectations about it.



  

Where We Stand

● We've just done a crazy, whirlwind tour of computability 
theory:
● The Church-Turing thesis tells us that TMs give us a 

mechanism for studying computation in the abstract.
● Universal computers – computers as we know them – are not 

just a stroke of luck. The existence of the universal TM ensures 
that such computers must exist.

● Self-reference is an inherent consequence of computational 
power.

● Undecidable problems exist partially as a consequence of the 
above and indicate that there are statements whose truth can't 
be determined by computational processes.

● Unrecognizable problems are out there and can be discovered 
via diagonalization. They imply there are limits to mathematical 
proof.



  

The Big Picture

DFA

NFA

Regex

CFG Decider

Recog-
nizer

Verifer
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Where We've Been

● The class R represents problems that can be 
solved by a computer.

● The class RE represents problems where “yes” 
answers can be verifed by a computer. 

The mapping reduction can be used to fnd 
connections between problems.



  

Where We're Going

● The class P represents problems that can be 
solved eficiently by a computer.

● The class NP represents problems where “yes” 
answers can be verifed eficiently by a 
computer.



  

Next Time

● Introduction to Complexity Theory
● Not all decidable problems are created 

equal!

● The Classes P and NP
● Two fundamental and important complexity 

classes.

● The P  NP Question≟

● A literal million-dollar question!



  

This is the end of the content we’ll be 
testing you on for the fnal exam! 

The next two lectures on Complexity 
Theory are purely for your own interest.
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